
Automatic Differentiation of C++ Codes for

Large-Scale Scientific Computing

Roscoe A. Bartlett, David M. Gay, and Eric T. Phipps

Sandia National Laboratories??, Albuquerque NM 87185, USA

Abstract. We discuss computing first derivatives for models based on
elements, such as large-scale finite-element PDE discretizations, imple-
mented in the C++ programming language. We use a hybrid technique of
automatic differentiation (AD) and manual assembly, with local element-
level derivatives computed via AD and manually summed into the global
derivative. C++ templating and operator overloading work well for both
forward- and reverse-mode derivative computations. We found that AD
derivative computations compared favorably in time to finite differenc-
ing for a scalable finite-element discretization of a convection-diffusion
problem in two dimensions.

Computing derivatives is ubiquitous in scientific computing; examples include
algorithms for nonlinear equation solving, optimization, stability analysis, and
implicit time integration. Computing derivatives quickly and accurately improves
both the efficiency and robustness of these numerical algorithms, particularly in
the presence of ill-conditioning. In this paper, we discuss computing first deriva-
tives of element-based models implemented in ANSI/ISO C++. We use the term
“element” in a broad sense to encompass any model whose computation consists
of repeated evaluations of a small set of functions, each involving relatively few
of the variables of the overall problem. Many classes of models fall into this cate-
gory, including finite-element and finite-volume PDE discretizations and network
models. We use a hybrid technique of automatic differentiation (AD) and man-
ual assembly similar to [1, 2] to carry out the model evaluation and derivative
computation one element at a time. This decomposition is discussed in more
detail in Section 1, which generalizes the ideas in [2] to general element-based
models and additionally describes how to compute the global adjoint.

We focus on ANSI/ISO C++ codes because much modern scientific code
development is done in C++. Since no source transformation tools for C++
were available to us, we used C++ operator overloading to implement AD for
computing the element-level derivatives. We assume the reader is familiar with
AD and the methods for implementing it; see [3] for a good introduction to
these concepts. We used two separate AD packages: the public domain pack-
age Fad [4] for forward-mode AD and our own reverse-mode package Rad [5].

?? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000. This is SAND2006-0902C.



2

We sought to determine if AD based on operator overloading could be incor-
porated effectively into a large, evolving scientific application code and whether
the resulting derivative calculations would be efficient enough for scientific use,
particularly for reverse-mode gradient evaluations. We applied this approach to
a large-scale finite-element simulation code called Charon, developed at Sandia
National Laboratories for reacting fluid flows and semiconductor device simu-
lations. Details of the implementation are presented in Section 2, along with
a discussion of difficulties we encountered. To assess efficiency, in Section 3 we
report flop counts and run times for Jacobian and Jacobian-transpose products
and finite differences on a small convection-diffusion problem.

We believe the work presented here to be novel in a number of ways. While
there have been several successful applications of automatic differentiation to
Fortran-based scientific codes using source transformation, we knew of no expe-
rience with this in large C++ codes. Successfully incorporating AD by operator
overloading and templating into such an application code is, we believe, both
nontrivial and new, and the process we used merits discussion. While computing
element derivatives was used as motivation for development of the Rad tool pre-
sented in [5], the work here represents the first measurement of the performance
of Rad in a real scientific code.

1 Computing Derivatives of Element-Based Models

We are concerned with evaluating and computing derivatives of a continuously
differentiable, vector valued function f : Rn → R

m, in which m and n may be
large, on the order of millions, and in which f(x) is the sum

f(x) =

N
∑

i=1

QT
i eki

(Pix) (1)

of a large number N of elements taken from a small set {ek} of element functions
ek : Rnk → R

mk where typically each nk, mk are on the order of 10 to 100. The
matrices Pi ∈ R

nki
×n and Qi ∈ R

mki
×m map global vectors to the local element

domain and range spaces respectively. Often we seek x such that f(x) = 0, so
we call f(x) the global residual.

In some applications, such as the one we discuss in Section 3, it is convenient
to deal with “interior” and “boundary” elements separately, with the boundary
elements modifying or replacing some values computed by the interior elements.
In effect, we compute f(x) = (I − STS)fI(x) + S

T fB(x), where (I − STS) is a
projection matrix that replaces some components of the sum fI(x) of the interior
elements by zeros. We suppress this extra complexity in what follows, since it is
orthogonal to the other issues we discuss.

Given (1), we can clearly compute the global Jacobian J = ∂f/∂x and adjoint
J̄ = wTJ element-wise:

∂f

∂x
=

N
∑

i=1

QT
i Jki

Pi, wT ∂f

∂x
=

N
∑

i=1

(Qiw)
TJki

Pi



3

where Jki
= ∂eki

/∂Pix is the Jacobian matrix of eki
.

With these decompositions, we have translated the difficult task of comput-
ing the global Jacobian and adjoint into a series of much smaller computations
on elements. In principle, any method can be used to compute these element-
level derivatives: AD, symbolic differentiation, or finite differencing. This task is
well suited to AD for several reasons. First, each element function ek has only
a few independent and dependent variables, often around ten and at most a
few hundred, so the element Jacobians Ji = ∂eki

/∂Pix can be treated as dense
matrices, and there is no need to use sparse AD techniques. Second, each ele-
ment computation is fairly simple, involving only a few operations per variable.
Thus the memory burden of reverse-mode AD is reasonable and checkpoint-
ing is not generally required. Third, all parallel communication occurs during
gathering of the local variables and scattering of the results to the global residu-
als/derivatives, which means it is not necessary to differentiate through parallel
communications. Lastly, the structure of the derivative assembly closely mir-
rors the residual assembly, particularly when we implement AD via templating
and operator overloading. This allows much of the same code for the residual
evaluation to be reused for the derivative computation, as discussed next.

2 Computing Element Derivatives Via AD in C++

We turn now to some practical details of implementing AD via operator over-
loading in the large, element-based scientific C++ code Charon, developed at
Sandia National Laboratories for simulation of reacting fluid flows and semicon-
ductor devices. Our goals were to determine if AD based on operator overloading
could be effectively incorporated into such an application code and whether the
resulting derivative calculations would be efficient enough for production use.

To compute derivatives using forward AD, there are many publicly available
C++ tools that in principle could be applied. We chose the Fad [4] package
because of its reputation for efficiency, flexibility, and simplicity. Fad uses ex-
pression templates to eliminate much of the overhead normally associated with
operator overloading. However, because the exact physics Charon is simulating
is not known until run time, we were forced to use the version of Fad that uses
dynamic memory allocation of the derivative array.

For reverse-mode derivative computations, we chose the Rad [5] package,
which is designed precisely for element gradient computations. Rad records just
enough detail during an element evaluation to permit efficient reverse accumula-
tion of the element gradient; Rad retains scratch memory, immediately reusing
it when evaluation of the next element begins.

To use these tools in Charon, we found C++ templating highly effective
for computing the element functions ek. In brief, we changed scalar floating-
point types (double or float) to templated types in all C++ classes used in
computing the ek. Then by instantiating the resulting templated classes on the
floating-point type, we get the original element evaluations, and by instantiating
on the AD types, we compute both the element functions and their derivatives.



4

We also templated the initialization and post-processing classes that gather and
scatter to and from local variables (i.e., that compute Pix and QT

i eki
, given eki

).
In addition to gathering and scattering, the AD specializations initialize the seed
matrix (for Fad) and extract the element derivatives.

By providing other AD types, one could obtain many other kinds of deriva-
tives, such as Hessian-vector products, and Taylor polynomials. This results
in major savings in code development time, since only one templated residual
computation needs to be written and maintained. We believe this approach is
significantly more suitable to a large, evolving application code than the stan-
dard approach of copying the undifferentiated source and manually changing
the type. Templating makes it impossible for the differentiated source code to
become out of sync with the undifferentiated source, and forces the developer to
think about how the source should be differentiated at development time.

Overall, we found our approach to be an effective way to use AD in Charon,
but we did encounter some difficulties. First, interfacing the templated functions
and classes for computing the ek to the rest of the non-templated application
code in a manner that easily allows new template types to be added to the
application code required some significant C++ software engineering. In brief,
we used container classes for storing instantiations of each templated class. This
allows “glue” code to interface template and non-template code in a manner
independent of the choices of AD data types.

Second, most C++ application codes use libraries written in other languages,
such as Fortran. For example, Charon uses Chemkin [6] to simulate chemical re-
actions appearing in elements. A simple way to deal with this is to provide
a templated interface class that has specializations for each AD type. These
specializations extract derivative values out of the C++ classes and then com-
pute derivatives of the Fortran source by whatever mechanism is available. In
Charon, we have a forward-mode differentiated version of the Chemkin source
provided by ADIFOR 2.0 [7], and this version is used by both the Fad and Rad
Charon/Chemkin interface classes. We plan later to make reverse-mode differ-
entiated Chemkin source available for the Rad specialization, provided by one
or more of OpenAD [8], ADIFOR 3.0, or Tapenade [9].

Third, templating the application code classes can lengthen the time taken to
compile the application significantly. Since definitions of templated functions and
classes must be available at the time they are instantiated, typically when they
are first referenced in a source file, the template definitions are often placed in
header files along with the declarations. This results in code-bloat, and increased
compile times since all of the template definitions must be recompiled in each
translation unit. This additional compile time was probably the single largest
hurdle to effectively incorporating AD into Charon. To cope, we split the header
file for a templated class into three files, a declaration header, an implementation
header, and a source file that includes both and explicitly instantiates the class on
all AD types via a preprocessor macro. This drastically reduces the recompilation
time of the application code, putting it on par with the original un-templated
code.



5

Finally, passive variables gave us trouble with incorporating reverse-mode
AD into Charon. Such “variables” act as constants, but are stored as AD types
for flexibility. Since Charon supports multiple physics, it is hard in some parts
of the code to know whether a quantity, say temperature, is a constant or an
unknown being solved for. To avoid storing the temperature as a passive vari-
able, we could provide two instantiations of the element functions, one for when
temperature is an unknown (AD type) and one for when it is constant (a floating-
point type). This would be necessary for any quantity that could be constant or
variable, yielding a combinatorial explosion of template instantiations. To avoid
this explosion, we always store potentially active variables as active. For reverse
AD, this requires us to tell Rad which of these active variables are really con-
stants (since they will not be reinitialized), so Rad can store them in memory
that is not recycled at the beginning of each element evaluation. We think we
can find a place in Charon where all passive variables are known, so Rad could
be told before the first function evaluation to treat them as constants, but so
far we have pursued more ad-hoc (and less satisfactory) approaches. Currently
we use traits to mark passive variables as constants, but this requires finding all
potentially passive variables, a daunting task that is unlikely to be maintainable.
Another approach would be to assume a variable is constant until it is reinitial-
ized and only to reuse memory for such non-constants. We believe this would
substantially reduce Rad’s efficiency, but it is an approach that would be helpful
for debugging, and we are looking into it.

3 An Example Convection-Diffusion Problem

We now compare costs of alternative derivative computations in a small, two di-
mensional reacting convection-diffusion problem implemented in Charon. Since
we compute derivatives element-wise, the size of the AD computation is propor-
tional to the degrees-of-freedom (DOF) per element, so we study how the costs
of the Jacobian and adjoint computations scale with the DOF.

Our test problem has a two dimensional rectangular domain Ω of width 2
and height 1 containing an ideal fluid with unit density and constant but spa-
tially varying fluid velocity u. The fluid contains N chemical species X1, . . . , XN ,
with mass fractions Y1, . . . , YN , unit molecular weights and unit diffusion coef-
ficients. The chemical species undergo the following hypothetical chemical re-
actions: 2Xj ⇀↽ Xj−1 + Xj+1, j = 2, . . . , N − 1, with both unit forward and
reverse rate constants. For each reaction j, the rate of progress for that reaction,
qj , satisfies

qj = [Xj ]
2 − [Xj−1][Xj+1] = Y

2
j − Yj−1Yj+1, j = 2, . . . , N − 1.

Then the production rate ω̇j of chemical species Xj is ω̇j = qj−1 − 2qj + qj+1

for j = 3, . . . , N − 2, with ω̇1 = q2, ω̇2 = −2q2 + q3, and ω̇N−1 = qN−2 − 2qN−1.
The partial differential equations governing the mass fractions of the N species



6

are given by

∂Yj

∂t
+ u · ∇Yj + ∇2Yj = ω̇j , j = 1, . . . , N − 1

N
∑

j=1

Yj = 1.
(2)

Charon uses bilinear basis functions and quadrangle finite elements in a Galerkin,
least-squares discretization [10]. Each element has a side length of 0.1, giving 200
total elements and four nodes per element.

Normally we would use Chemkin to compute the production rates ω̇j , but to
study the efficiency of the operator overloading approach, we used hand-coded
C++ instead. We ignored spatial boundary conditions on the domain Ω, since
they are not relevant to the computational complexity of the residual, Jacobian,
and adjoint computations. To avoid complications in time integration, we made
this a steady-state problem by setting ∂Yj/∂t = 0, j = 1, . . . , N . While these
simplifications give a highly contrived test problem that is not physically mean-
ingful, it does have two important qualities. First, structurally it is qualitatively
similar to many of the PDE problems to which Charon is applied, and second
we can easily vary the number of unknowns to see how the cost of AD scales.

We computed ratios of Jacobian to residual evaluation time for the discretized
form of (2), using both Fad and finite differencing to compute the element-level
Jacobians. Figure 1(a) shows how these ratios vary with the degrees-of-freedom
per element. We computed corresponding floating-point operation (flop) count
ratios, which are shown in Figure 1(b). (Templating made getting the flop counts
easy.) We used gcc 3.4.4 with -O2 optimization on a 3.2 Ghz dual-processor
(Xenon) workstation having 2 GB of RAM and a 512 KB level-1 cache, run-
ning Fedora Core 3 Linux. Note that while an individual element computation
may fit entirely in cache, the entire 200 element residual evaluation does not.
As expected, both the time and flop-count ratios scaled nearly linearly with the
DOF per element, with slopes of about 0.27 and 1.55 respectively. While Fad Ja-
cobian computations used roughly 50% more operations than finite differences,
Fad was more than three times faster. The exact cause of this timing difference
is unclear, but is likely related to improved data locality due to vectorization
of the forward mode. A relative flop count slope slightly above 1.5 is not unex-
pected [3]. Fad recomputes each operation once for every derivative component,
to give the compiler a chance to optimize temporary template objects away. We
are investigating ways to cache operation results while still letting the compiler
optimize temporaries away, in hopes of making Fad even more efficient.

Relative times and flop counts for an adjoint (wTJ) computation appear in
Figures 1(c) and 1(d). The adjoint computation took between 7.5 and 9.5 times
longer than the residual computation, but used only about 5.6 to 5.8 times as
many operations. Compared with Fad, Rad had a larger ratio of time to flops,
because of the extra memory overhead of reverse-mode AD. However, this still
seems reasonably efficient: computing an adjoint with 400 DOF is ten times faster
than computing the full Jacobian using Fad and multiplying by the transpose.



7

0 100 200 300 400
0

100

200

300

400

500

DOF Per Element
R

el
at

iv
e 

E
va

l. 
T

im
e

Jacobian Eval. (a)

1.02

0.27

0 100 200 300 400
7

7.5

8

8.5

9

9.5

DOF Per Element

R
el

at
iv

e 
E

va
l. 

T
im

e

Adjoint Eval. (c)

0 100 200 300 400
0

200

400

600

800

DOF Per Element

R
el

at
iv

e 
F

lo
p

 C
o

u
n

t

Jacobian Eval. (b)

0.94

1.55

0 100 200 300 400
5.6

5.65

5.7

5.75

5.8

5.85

DOF Per Element

R
el

at
iv

e 
F

lo
p

 C
o

u
n

t

Adjoint Eval. (d)

FD
FAD

FD
FAD

RAD

RAD

Fig. 1. Jacobian and adjoint evaluations versus degrees of freedom (DOF = 4 ×
number of species). (a) Relative Jacobian computation times. (b) Relative Jacobian
flop counts. (c) Relative adjoint (wT

J) times. (d) Relative adjoint flop counts

4 Summary and Conclusions

Our tests covered a range of 20 to 400 DOF per element, which encompasses
the problem sizes normally seen in finite-element application codes. Again, since
the derivatives are computed element-wise, it is this dimension that dictates the
difficulty of the AD problem, not the number of elements or global number of
unknowns. Thus for PDE discretizations with up to millions of unknowns, we
have shown that forward-mode AD via Fad is a highly efficient method for com-
puting the global Jacobian, more efficient than finite differencing and with better
scaling to larger numbers of PDE equations. In fact Charon recently computed
a transient simulation of the electric current in a finite element discretization of
a bipolar junction transistor with more than 2.7 million elements on 128 proces-
sors, leveraging the Fad Jacobian computation for implicit time integration. We
also found that Rad provides reverse-mode derivative computations with rea-
sonable efficiency, which makes gradients available for use in optimization and
sensitivity analysis.

We are highly encouraged by both the efficiency of forward and reverse mode
AD in C++ codes, and by our experiences with implementation via templating.
The Fad Jacobian computation is much faster than conventional finite differ-
encing and provides analytic derivatives as well. Templating allows the code



8

developer to write and maintain one version of source code that has analytic
derivatives available essentially for free. Many different derivative quantities then
become available, which should enable development and use of advanced non-
linear solver, optimization, time integration, stability analysis, and uncertainty
quantification algorithms. We successfully overcame all hurdles encountered in
templating Charon, and templating is now a permanent feature of the code.
All new code development of Charon relating to element computations is tem-
plated, so analytic derivatives will always be available for any new features that
are added. Charon has become an integral component of many important Sandia
projects that require computational simulation and analysis, in no small part due
to availability of analytic derivatives and the advanced algorithms they enable.

References

1. Abate, J., Benson, S., Grignon, L., Hovland, P.D., McInnes, L.C., Norris, B.: Inte-
grating AD with object-oriented toolkits for high-performance scientific computing.
In Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U., eds.: Automatic
Differentiation of Algorithms: From Simulation to Optimization. Computer and In-
formation Science. Springer, New York, NY (2002) 173–178

2. Tijskens, E., Roose, D., Ramon, H., De Baerdemaeker, J.: Automatic differentia-
tion for nonlinear partial differential equations: An efficient operator overloading
approach. Numerical Algorithms 30 (2002) 259–301

3. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA
(2000)

4. Aubert, P., Di Césaré, N., Pironneau, O.: Automatic differentiation in C++ using
expression templates and application to a flow control problem. Computing and
Visualisation in Sciences 3 (2001) 197–208

5. Gay, D.M.: Semiautomatic differentiation for efficient gradient computations. In
Bücker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B., eds.: Automatic
Differentiation: Applications, Theory, and Tools. Lecture Notes in Computational
Science and Engineering. Springer (2005)

6. Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat,
H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Lar-
son, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart,
W.E., Glarborg, P., Wang, C., Adigun, O., Houf, W.G., Chou, C.P., Miller, S.F.,
Ho, P., Young, D.J.: CHEMKIN Release 4.0, San Diego, CA. (2004)

7. Bischof, C.H., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic dif-
ferentiation of Fortran 77 programs. IEEE Computational Science & Engineering
3(3) (1996) 18–32

8. Utke, J.: OpenAD: Algorithm implementation user guide. Technical Memoran-
dum ANL/MCS–TM–274, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill. (2004)

9. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300,
INRIA, Sophia-Antipolis (2004)

10. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation
for computational fluid dynamics: VIII. the Galerkin/least-squares method for
advective-diffusive equations. Computational Methods Applied Mechanics and
Engineering 73 (1989) 173–189


